NEW STANDARD ACADEMY

Date: 06-04-24 CLASS: 11TH Time: 90min.

PHYSICS

- 1. Find the value of λ in the unit vector $0.4\hat{\imath} + 0.8\hat{\jmath} + \lambda \hat{k}$.
 - a) 3
- c) 4
- b) $\sqrt{5}$
- d) $\sqrt{0.2}$
- 2. Under a force of $10\hat{\imath} 3\hat{\jmath} + 6\hat{k}$ newton, a body of mass 5 kg is displaced from the position $6\hat{\imath} + 5\hat{\jmath} 3\hat{k}$ to the position $10\hat{\imath} 2\hat{\jmath} + 7\hat{k}$ then work done.
 - a) 121J
- c) 242 J
- b) 300J
- d) 800J
- 3. The diagonals of a parallelogram are given by $\overrightarrow{R_1} = 3\hat{\imath} + 2\hat{\jmath} 7\hat{k}$. And $\overrightarrow{R_2} = 5\hat{\imath} + 6\hat{\jmath} 3\hat{k}$. Then the area of
 - a) $\sqrt{509}$

parallelogram.

- c) 509
- b) $\sqrt{500}$
- d) $\sqrt{405}$
- 4. Find $|\vec{A} \times \vec{B}| if |\vec{A}| = 10$, $|\vec{B}| = 2$ and $\vec{A} \cdot \vec{B} = 1$
 - a) 16
- c) 26
- b) 6
- d) 36
- 5. If resultant of two vectors of equal magnitude is equal to the magnitude of either vector, then the angle between the two vectors is
 - a) 30°
- c)90°
- b) 60°
- d)180°
- 6. Three vectors \vec{A} , \vec{B} and \vec{c} are represented by three sides of a triangle taken in same order. The resultant \vec{R} is the resultant of these three vectors then
 - a) R≠ 0
- c) R=0
- b) R<0
- d) R>0
- 7. A car moving towards south with a speed θ changes its direction and moves with same speed towards west. The change in the velocity of the car is
 - a) θ along N-W
- c) $\sqrt{2} \vartheta$ along N-W
- b) ϑ along S-E
- d) $\sqrt{2} \vartheta$ along S-E
- 8. The angle between vectors

- $\vec{A} = \hat{\imath} + 2\hat{\jmath} \hat{k}$. and $\vec{B} = \hat{\imath} + \hat{\jmath} 2\hat{k}$ is
- a) 30°
- c)90°
- b) 60°
- d)120°
- 9. If $\vec{A} = n\hat{\imath} \hat{\jmath} + 2\hat{k}$ and $\vec{B} = 2\hat{\imath} + 2\hat{\jmath} \hat{k}$ are perpendicular to each other then value of n is
 - a) 1
- c) 2
- b) 3
- d) 4
- 10. If resultant of two vectors \vec{P} AND \vec{Q} is $|\vec{P} \vec{Q}|$ then angle between \vec{P} AND \vec{Q} is
 - a) 30°
- c)90°
- b) 60°
- d)180°

CHEMISTRY

- 1. In hydrogen atom, energy of the first excited sate is -3.4eV. Then find out the KE of the same orbit of hydrogen atom:
 - a) +3.4eV
- c) +6.8eV
- b) -13.6 eV
- d) +13.6eV
- 2. In a multi- electron atom, which of the following orbitals described by the three quantum number will have the same energy in the absence of magnetic and electric fields?
 - 1) n=1, l=0, m=0
 - 2) n=2,l=0, m=0
 - 3) n=2, l=1, m=1
 - 4) n=3, l=2, m=1
 - 5) n=3, l=2,m=0 a) 1) and 2)
- c) 2)and 3)
- b) 3) and 4)
- d) 4) and 5)
- 3. A gas absorbs a photon of 355 nm and emits two wavelengths. If one of the emissions is at 680nm the other is at:
 - a) 518nm
- c) 1035nm
- b) 325nm
- d) 743nm
- 4. What is the maximum numbers of electrons that can be associated with the following set of quantum numbers? N=3, l=1 and m=-1
 - a) 4

c) 2

5.	b) 10 d) 6 What is the maximum number of orbitals that can be identified with the following	5.	Events preceding re- formation of nuclear envelope during M-phase of cell cycle are a) Transcription from chromosomes and
	quantum numbers? N= 3, l=1 and m=0 a) 1 c) 2		reassembly of nuclear lamina b) Formation of contractile ring and phragmoplast
6.	b) 3 d) 4 Calculate the energy in joules according to		c) Decondensation of chromosomes and reassembly of nuclear lamina
	light of wavelength 45 nm. (Planck's constant, h=6.63× 10 ⁻³⁴ Js, speed of light,		d) Formation of contractile ring and transcription from chromosomes
	$c=3 \times 10^8 ms^{-1}$	6.	DNA replication occurs in
	a) 6.67×10^{15} c) 6.67×10^{11} b) 4.42×10^{-15} d) 4.42×10^{-18}		a) G ₁ -phase c) G ₂ - phase b) S- phase d)G ₀ - phase
7.	b) 4.42×10^{-15} d) 4.42×10^{-18} Which of the following is the energy of a		b) 5- phase u)00- phase
٠.	possible excited state of hydrogen?	7.	Synaptonemal complex is fromed during
	a) -3.4eV c) +6.8eV		a) Zygotene c) Diakinesi
	b) +13.6eV d) -6.8eV		b) Leptotene d) Pachyten
8.	The region in the electromagnetic		
	spectrum where the balmer series lines	8.	Yeast completes the cell cycle in
	appear is:		a) 30 minutes b) 60 minutes c)90 minutes d)120 minutes
	a) Infrared c) ultraviolet	9.	
9.	b) Microwave d) visible A certain orbital has no angular nodes and	9.	correct sequence(a) Crossing over (b)
9.	two radial nodes. The orbital is:		Synapsis (c) Terminalisation of
	a) 2s c) 3s		chiasmata(d) disappearance of nucleolus.
	b) 3p d) 2p		a) b,a,d,c c) b,a,c,d
10.	The shortest wavelength of hydrogen atom		b) a,b,c,d d) b,c,d,a
	in lyman series is λ. The longest	10.	Which of the following options gives the
	wavelength in balmer series of He ⁺ is:		correct sequences of events during mitosis
	a) $\frac{5}{9\lambda}$ c) $\frac{9\lambda}{5}$		a) Condensation → Nuclear membrane
	b) $\frac{5\lambda}{9}$ d) $\frac{36\lambda}{5}$		disassembly → Crossing over → segregation→ telophase
			b) Condensation → Nuclear membrane
1	BIOLOGY During anaphase –I of meiosis		→disassembly → Arrangement at
1.	a) Homologous chromosomes separate		equator -> centromere division ->
	b) Non-homologous autosomes separate	ATI	segregation -> telophase
	c) Sister chromatids separate		c) Condensation \rightarrow Crossing over \rightarrow
	d) Non- Sister chromatids separate		Nuclear membrane disassembly
			→ segregation → telophase
2.	G1,S and G2 phases are observed in		d) Condensation → Arrangement at
	a) Prophase c) Anaphase	- 6	→equator→centromere division →
•	b) Interphase d) Metaphase		→ segregation → telophase
3.	The stage when chiasmata are observed is	9	MATHS
	a) Leptoteneb) Diplotenec) Zygotened) Pachytene		WATIIS
4	Name the phase of prophase I when	1.	Which of the following relation is a
т.	synaptonemal complex dissolves,	•	function.
	chromatids become clear and bivalents are		a) {(1,4)(2,6)(1,5)(3,9)}
	called tetrads		b) {(3,1)(3,2)(3,3)(3,4)}
	a) Pachytene c) Diakinesis		c) {(1,2) (2,2) (3,2)(4,2)}
	,		

- 2. The domain of $f(x) = \frac{log_2(x+3)}{x^2+3x+2}$ is
 - a) $R-\{-1,-2\}$
 - b) (-2,∞)
 - c) $R-\{-1,2-3\}$
 - d) $(-3, \infty)$ - $\{-1, -2\}$
- 3. The domain of the function

$$f(x) = \sqrt{x - \sqrt{1 - x^2}}$$
 is

- a) $\left[-1\frac{-1}{\sqrt{2}}\right] \cup \left[\frac{1}{\sqrt{2}} \ 1\right]$
- b) [-1,1]
- c) $\left(-\infty, \frac{-1}{\sqrt{2}}\right] \cup \left[\frac{1}{\sqrt{2}}, \infty\right)$
- d) $\left[\frac{1}{\sqrt{2}} 1\right]$

$$(x+3, x<1)$$

4. If $f(x) = \begin{cases} x^2, 1 \le x \le 3 \text{ then which of the} \\ 2 - 3x, x > 3 \end{cases}$

following is the greatest?

- a) f(0)
- c) f(4)
- b) f(3)
- d) f(2)
- 5. Find the value of b and c for which the identity f(x+1)- f(x) = 8x+3 is satisfied, where $f(x) = bx^2 + cx + d$.
 - a) b = 5, c = 1
 - b) B=-5, c=-1
 - c) B = 4, c = -1
 - d) B=-4, c=1
- 6. If $f(x) = x^2$, find $\frac{f(1.1) f(1)}{(1.1 1)}$
 - a) 2.1
- c) 2.2
- b) 3.1
- d) 3.2
- 7. The domain of the fraction f(x) =

$$\left[\log_{10\left(\frac{5x-x^2}{4}\right)}\right]^{1/2} is$$

- a) $-\infty < x < \infty$
- c) $1 \le x \le 4$
- b) $4 \le x \le 16$
- d) $-1 \le x \le 1$
- 8. The range of $f(x) = [\sin x + [\cos x + [\tan x + [\sec x]]]], x \in (0, \frac{\pi}{4})$, where [.] denotes the greatest integer function $\leq x$, is
 - a) $\{0,1\}$
- c) $\{-1,0,1\}$
- b) {1}
- d) None of these
- 9. The domain of $f(x) = \cos^{-1}\left(\frac{2-|x|}{4}\right) + [\log(3-x)]^{-1}is$
 - a) [-2,6]
- c) $[-6,2)\cup(2,3)$
- b) [-6,2]
- d) $[-2,2] \cup (2,3)$

- 10. Let $A=\{x \in R: -9 \le x < 4\}$, $B=\{x \in R: -13 < x \le 5\}$ and $C=\{x \in R: -7 \le x \le 8\}$ then, which one of the following in correct.
 - a) $-9 \in (A \cap B \cap C)$
 - b) $-7 \in (A \cap B \cap C)$
 - c) $4 \in (A \cap B \cap C)$
 - d) $5 \in (A \cap B \cap C)$

